Arribas-Bel and Fleischmann (2022) define urban form as what a space “looks like” compared to urban function, which focuses on “what it is used for”.
Urban form
Urban function
Conceptually akin to Convolutional Neural Networks (CNNs) used in image processing
\[ h_{v}^{(l)} = \sigma \left( W^{(l)} \sum_{u \in N(v)} \frac{1}{|N(v)|} h_{u}^{(l-1)} \right) \]
\[ h_{v}^{(l)} = \sigma \left( W^{(l)} \ {\scriptstyle COMBINE} \left( h_{v}^{l-1}, {\scriptstyle AGGREGATE} \left( \bigl\{ h_{u}^{(l-1)}, \forall u \in N(v) \bigl\} \right) \right) \right) \]
► Research Question: Can we use them to study urban form (and function)?
Unsupervised learning of nodes representations
Pre-processing
Model
Leicester (UK)
Node embeddings | Ego-graph emb. | ||||
---|---|---|---|---|---|
Measure | Fist dimension | Second dimension | Fist dimension | Second dimension | |
Node in city | |||||
closeness centrality | 0.262*** | -0.194*** | 0.365*** | -0.337*** | |
betweenness centrality | 0.242*** | -0.026*** | 0.117*** | -0.155*** | |
Ego-graph | |||||
count of nodes | -0.033*** | -0.104*** | -0.138*** | -0.226*** | |
count of edges | 0.013* | -0.101*** | -0.068*** | -0.213*** | |
average node degree | 0.261*** | 0.005 | 0.377*** | 0.037*** | |
total edge length | 0.210*** | -0.131*** | 0.208*** | -0.246*** | |
average edge length | 0.370*** | -0.045*** | 0.580*** | -0.022*** | |
average count of streets per node | 0.280*** | -0.232*** | 0.431*** | -0.421*** | |
count of intersections | 0.047*** | -0.144*** | -0.019*** | -0.302*** | |
total street segment length | 0.192*** | -0.163*** | 0.190*** | -0.315*** | |
count of street segments | 0.009 | -0.134*** | -0.070*** | -0.285*** | |
average street segment length | 0.365*** | -0.044*** | 0.589*** | -0.015* | |
average street circuity | -0.028*** | 0.131*** | -0.066*** | 0.225*** |
GNNs can be used as an unsupervised framework to explore urban form
Future work
Stef De Sabbata
University of Leicester, UK
s.desabbata@leicester.ac.uk
Andrea Ballatore
King’s College London, UK
andrea.ballatore@kcl.ac.uk
Pengyuan Liu
Nanjing University of Information Science and Technology, China
003732@nuist.edu.cn
Nicholas J. Tate
University of Leicester, UK
njt9@leicester.ac.uk